
Data & Knowledge Engineering 67 (2008) 504–516
Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier .com/ locate/datak
Comparison of approaches for estimating reliability of individual
regression predictions
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The paper compares different approaches to estimate the reliability of individual predic-
tions in regression. We compare the sensitivity-based reliability estimates developed in
our previous work with four approaches found in the literature: variance of bagged models,
local cross-validation, density estimation, and local modeling. By combining pairs of indi-
vidual estimates, we compose a combined estimate that performs better than the individ-
ual estimates. We tested the estimates by running data from 28 domains through eight
regression models: regression trees, linear regression, neural networks, bagging, support
vector machines, locally weighted regression, random forests, and generalized additive
model. The results demonstrate the potential of a sensitivity-based estimate, as well as
the local modeling of prediction error with regression trees. Among the tested approaches,
the best average performance was achieved by estimation using the bagging variance
approach, which achieved the best performance with neural networks, bagging and locally
weighted regression.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

When using supervised learning for modeling data, we aim to achieve the best possible prediction accuracy for the un-
seen examples which were not included in the learning process [1]. The most common measures for evaluating prediction
accuracy are averaged accuracy measures such as the mean squared error (MSE) and the relative mean squared error (RMSE).
Although these estimates evaluate model performance by summarizing the error contributions of all test examples, they
provide no local information about the expected error of an individual prediction for a given unseen example. Having infor-
mation about single prediction reliability [2] at our disposal could be an important benefit in risk-sensitive areas where act-
ing upon predictions may have financial or medical consequences (e.g. medical diagnosis, stock market, navigation, control
applications). For example, in medical diagnosis, physicians are not interested only in the average accuracy of the predictor,
but expect the system to provide a prediction as well as an estimate of its reliability. Since the averaged accuracy measures
do not fulfill this requirement, reliability measures for individual predictions are needed in this area.

Various methods have been developed to enable the users of classification and regression models to gain more insight
into the reliability of individual predictions. Some of these methods were focused on extending formalizations of existing
classification and regression models, enabling them to make predictions with their adjoined reliability estimates. Another
group of methods focused on the development of model-independent approaches, which are more general but also harder
to analytically evaluate with individual models.
. All rights reserved.
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Since some of the approaches from the first group were able to make use of probabilistic and model-specific properties,
reliability estimates in this area were defined with a probabilistic interpretation, which makes them confidence measures.
Confidence measures have values spanning the interval [0,1], where 0 represents the confidence of the most unreliable pre-
diction and 1 the confidence of the most reliable one. Since estimates developed using other approaches do not necessarily
have a probabilistic interpretation (and values are not confined to the interval [0,1]), we use the more general term reliability
estimate to refer to measures that provide information about our level of trust in the accuracy of an individual prediction.

In this paper we compare five approaches to model-independent reliability estimation for individual examples in regres-
sion. We mostly focus on comparing the sensitivity-based estimates developed in our previous work to four other ap-
proaches implemented using ideas from related work. We evaluate the performance of selected reliability estimates on
28 testing domains using eight regression models: regression trees, linear regression, neural networks, bagging with regres-
sion trees, support vector machines, locally weighted regression, random forests and generalized additive model. With the
aim of improving the performance of the estimates, we test the performance of combined (averaged) pairs of estimates.

This paper is organized as follows. Section 2 summarizes previous work from related areas of individual prediction reli-
ability estimation and Section 3 presents and proposes the reliability estimates. We describe the experiments and testing
protocol, and interpret the results in Section 4. Section 5 provides conclusions and ideas for further work.
2. Related work

The most relevant related work is in the area of reliability estimation for individual examples. An appropriate criterion for
differentiating between various approaches is whether they target a specific predictive model or whether they are model-
independent. While the model-specific approaches are less general, they are usually founded on exact mathematical or prob-
abilistic properties. Since the model-independent approaches are general, they cannot exploit parameters specific to a given
predictive model (e.g. the sum of least squares in linear regression), but rather focus on influencing the parameters that are
available in the standard supervised learning framework (e.g. the learning set and attributes). The reliability estimates based
on these approaches are defined as metrics over the observed learning parameters. Since the reliability is not based on a par-
ticular probabilistic distribution and a chosen confidence interval, these metrics can take values from an arbitrary interval of
numbers. As such, the metrics’ values have no probabilistic interpretation.

The idea of reliability estimation for individual predictions originated in statistics, where confidence values and intervals
are used to express the reliability of estimates. In machine learning, statistical properties of predictive models were used to
extend predictions with reliability estimates. Research on support vector machines [3,4] introduced the notions of confidence
and credibility and showed that the basic model can be successfully expanded with reliability estimates. Also focusing on
particular predictive models, Nouretdinov et al. [5] expanded the ridge regression model, Weigend and Nix [6] the multilayer
perceptron, and Heskes, Carney and Cunningham [7,8] the ensembles of neural networks. It is obvious that these approaches
cannot be used with an arbitrary predictive model due to their definition, which is bound to the specific model formalism.

In contrast, the methods that are independent of the predictive model are also more generally applicable. These methods
utilize approaches such as local modeling of prediction error based on input space properties and local learning [9,10], and
meta-predicting the leave-one-out error of an individual example [11]. The latter work introduced a meta-level of reasoning
and presented a meta-algorithm for predicting the leave-one-out error. The simulations showed that the proposed meta-
learning approach compares favorably to the conventional theoretical leave-one-out error bounds.

The notion of reliability estimation has frequently appeared together with the notion of transduction, e.g. in [3,4]. Trans-
duction is an inference principle that reasons from particular to particular [12], in contrast to inductive learning, which aims
at inferring a general rule from a finite set of data. Transductive methods may therefore use only selected examples and not
necessarily the whole input space. This locality enables the transductive algorithms to be used for making other inferences
besides predictions. We find inferences of reliability measures to be of special interest. As an application of this principle,
Kukar and Kononenko [13] proposed a transductive method for estimation of classification reliability. Their work introduced
a set of reliability measures which successfully separate correct and incorrect classifications and are independent of the
learning algorithm.

We later adapted this transductive approach to regression by proposing a simple linear model for predicting prediction
reliability [14] and by evolving a basic sensitivity analysis approach, which we evaluated with regression trees and neural
networks [15]. In our further work [16], we proposed a standardized framework for the use of sensitivity analysis to estimate
prediction reliability, evaluating its suitability on three regression models (regression trees, neural networks and support
vector machines) and motivating its development by the minimum description length principle [17]. In our previous work,
we based our motivation for developing model-independent reliability estimates on the following ideas from related re-
search fields:

� Approaches which perturb data. The design of these approaches implies that different subsets of learning examples cause
different prediction accuracies for individual predictions [18–22]. Work in this field suggests that we should observe how
the inclusion or removal of individual learning examples in the learning set influences the prediction accuracy of that par-
ticular example. Similar ideas of focusing on particular examples to perform learning are used also in the fields of active
learning [23–25] and reinforcement learning [26,27].
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� Usage of unlabeled examples in supervised learning. The results in this field [28–32] indicate that additional learning exam-
ples, generated from the same original probabilistic distribution, can be beneficial for improving predictor accuracy. This
idea suggests that we should observe how the presence of a particular new example in the learning set influences the
model’s predictive accuracy. The idea also offers the possibility of making inferences about prediction reliability for an
example by observing the resulting change in the model.

� Sensitivity analysis. This area presents a possible general framework which can be used to design an approach that is inde-
pendent of the predictive model [33–36]. Namely, this technique requires no knowledge of the model’s mathematical
properties. Instead, the model is considered as a black box, with inputs and outputs as the only parameters being influ-
enced and observed. We focus on this research field in more detail in Section 3.1.

The work presented here extends our initial work [14–16] and compares the performance of the previously proposed esti-
mates to four adapted approaches from related work. They are summarized in the following section.

3. Reliability estimates

3.1. Local sensitivity analysis reliability estimates

3.1.1. Sensitivity analysis
An approach which enables us to analyze the local particularities of learning algorithms is sensitivity analysis [35–38], which

is used in statistics and mathematical programming [39]. Sensitivity analysis aims to determine how much the output of a sys-
tem is affected by variations in input. We can adopt the sensitivity analysis framework for reliability estimation by observing
the changes in model outputs (predictions) when we modify its input (the learning data set). Apart from modifying the learning
set, the sensitivity analysis approach could also observe the output variation with respect to changes in other model parameters.
Since such a technique depends on the specifics of a model, however, we lose the benefits of having a model-independent pro-
cedure. Treating the predictive model as a black box, the sensitivity analysis approach indirectly analyzes aspects of the model
that cannot be measured quantitatively, such as generalization ability, bias, resistance to noise, and avoidance of overfitting.

For influencing the input of the system (regression model), we expanded the learning set with an additional learning exam-
ple, as motivated by the ideas from Section 2. By making such a minor change to the learning set and inducing a model on it,
one can expect a similarly small change in the predictions of the new model. Large changes in prediction may be a sign of insta-
bility in the induced model. The purpose of modifying the learning set locally is to explore the sensitivity of the regression
model in that particular part of the problem space. By doing so, the reliability estimates were adapted to the local particular-
ities of data distribution and noise, thus relating the sensitivity to changes in prediction when the learning set was perturbed.

Given an unlabeled example and the initial prediction (the prediction of the original regression model) for which the reli-
ability was to be estimated, we therefore repeatedly modified the learning set to obtain a set of sensitivity models. Using these
sensitivity models, the sensitivity predictions were computed on the same example. A set of these sensitivity predictions al-
lowed us to design the reliability estimates which evaluated the local bias and local variance in the problem subspace, lead-
ing to information about prediction reliability.

3.1.2. Reliability estimates
In our previous work [16] we used the sensitivity analysis approach to develop two reliability estimates (RE1 and RE3),

which estimate the local variance and the local bias for a given unlabeled example. For greater clarity, we refer to these
two estimates as SAvar (Sensitivity Analysis – variance) and SAbias (Sensitivity Analysis – bias) in this paper. To estimate
the reliability for a given example, we expanded the learning set with that particular example, labeling it with
K + e � (lmax � lmin). Here, K denotes the initial prediction of the example, e is a sensitivity parameter (which influences the
label value of the additional learning example and therefore indirectly defines the magnitude of the induced change in
the initial learning set), and lmin and lmax denote the lower and the upper label bounds of the learning examples, respectively.
In the next step, a sensitivity model was induced on the modified learning set and a sensitivity prediction Ke was computed for
the same particular example.

After computing different sensitivity predictions using different values of parameter e (in our previous work, we selected
e 2 E, E = {0.01,0.1,0.5,1.0,2.0}), the predictions were combined into different reliability estimates. Using more values of e
allowed us to widen the observation window in the local problem space and to define more robust reliability estimates
by averaging the individual components. The estimates were defined by observing the differences between the initial and
the sensitivity predictions. The main idea behind their definition was to observe the differences between sensitivity predic-
tions made using e and �e. The estimates were defined as follows:P
SAvar ¼ e2EðKe � K�eÞ
jEj ð1Þ
and
SAbias ¼
P

e2EðKe � KÞ þ ðK�e � KÞ
2jEj ð2Þ
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In the above estimates, K represents the prediction of the initial regression model (the initial prediction), Ke and K�e denote
the sensitivity predictions, and E denotes a set of used sensitivity parameters e.

3.2. Variance of a bagged model

In related work, the variance of predictions in bagged aggregates [18] of artificial neural networks has been used to indi-
rectly estimate the reliability of the aggregated prediction [7,8]. Since an arbitrary regression model can be used with the
bagging technique, we generalize the proposed reliability estimate for use with other regression models.

Given a bagged aggregate of m predictive models, where each of the models yields a prediction Ki, i = 1, . . . ,m, the label of
an example is predicted by averaging the individual predictions:
K ¼
Pm

i¼1Ki

m
ð3Þ
and reliability estimate BAGV is defined as the prediction variance:
BAGV ¼ 1
m

Xm

i¼1

ðKi � KÞ2 ð4Þ
The design of the BAGV estimate is illustrated in Fig. 1. In our experimental work, the tested bagged aggregates contained
m = 50 model instances.

3.3. Local cross-validation reliability estimate

Existing work has demonstrated various uses of only local information to perform learning. For example, Schaal and Atke-
son [40] perform learning using locally applied linear models, and Birattari et al. [9] proposed an approach to dynamically
select the most appropriate local neighborhood size. In this context, some authors also perform or optimize local learning by
using local reliability estimates. In this way, Giacinto and Roli [10] use local models to evaluate local classification accuracies
and dynamically select the most appropriate classifier to classify each example correctly. Similarly, Woods et al. [41] com-
bine local classifiers using estimates of local classifiers’ accuracies. In regression, Schaal and Atkeson [42] propose a local
application of the locally weighted regression, optimizing it by assessing local prediction accuracy using the mean squared
local cross-validation error.

In our work, we propose the LCV (Local Cross-Validation) reliability estimate, which is computed using the local leave-
one-out (LOO) procedure. The estimate is similar to the mean squared local cross-validation error as in [42], except that
it uses the absolute errors instead of the signed errors. We also use this estimate not only with neural networks, but with
all eight regression models that we studied. Suppose that we are given an unlabeled example for which we wish to compute
the prediction and the LCV estimate. Focusing on the subspace defined by k nearest neighbors (parameter k is selected in
advance), we then generate k local models, each of them excluding one of the k nearest neighbors. Using the generated mod-
els, we compute the leave-one-out predictions Ki, i = 1, . . . ,k for each of the nearest neighbors. Since the labels Ci, i = 1, . . . ,k of
the nearest neighbors are given, we are therefore able to calculate the absolute local leave-one-out prediction errors
Ei = jCi � Kij. The prediction for the given local example is then computed using the k nearest neighbors (k-NN) algorithm
and the LCV estimate is computed as the weighted average (weighted by distance using a distance metric d()) of the nearest
neighbors’ local errors Ei. The procedure is schematically illustrated in Fig. 2 and the algorithm pseudocode is shown in Fig. 3.
In the algorithm, N denotes a set of the nearest neighbors, M denotes a local regression model, d() denotes a distance metric
and x an example for which we are computing the LCV estimate.

In our experimental work, we implemented the preceding algorithm to be adaptive to the size of the neighborhood with
respect to the number of examples in the learning set. The parameter k was therefore not fixed, but assigned as d1/20 � jLje,
where jLj denotes the number of learning examples.
Aggregated models

BAGV=
variance
of predictions
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Fig. 1. Illustrated definition of the reliability estimate BAGV.



compute the prediction
error of the LOO example
on the local model

LCV=
local cross-validation
error

Fig. 2. Illustrated definition of the reliability estimate LCV.

Fig. 3. The pseudocode for the computation of the LCV reliability estimate.
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3.4. Density-based reliability estimate

One of the traditional approaches to estimating prediction reliability is based on the distribution of learning examples in
the input space [43]. As illustrated in Fig. 4, the density-based estimation of prediction error assumes that error is lower for
predictions which are made in denser problem subspaces (a portion of the input space with a more learning examples), and
higher for predictions which are made in sparser subspaces (a portion of the input space with fewer learning examples). This
means that we trust the prediction with respect to the quantity of information that is available for its computation.

A typical use of this approach is with decision and regression trees, where we trust each prediction according to the pro-
portion of learning examples that fall in the same leaf of a tree as the predicted example. But although this approach con-
siders the quantity of disposable information, it also has the disadvantage that it does not take into account the learning
examples’ labels. This causes the method to perform poorly with noisy data and in cases when distinct examples are not
clearly separable.

We define the reliability estimate DENS as the value of the estimated probability density function for a given unlabeled
example. To estimate the density, we use Parzen windows [44,45] with the Gaussian kernel. We reduced the problem of
computing the multidimensional Gaussian kernel to computing the two-dimensional kernel by using a distance function ap-
a prediction for example
in space
is

sparser
less reliable

a prediction for example
in space
is

denser
more reliable

DENS=
inverted density estimate

Fig. 4. Illustrated definition of the reliability estimate DENS.
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C - KNeighbors

Label C1

Label C2

Label C3

Label C4

Prediction K

Label C5

Fig. 5. Illustrated definition of the reliability estimate CNK.
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plied to pairs of example vectors. Given the learning set L=((x1,y1), . . . , (xn,yn)), the density estimate for unlabeled example
(x, _) is therefore defined as
pðxÞ ¼
Pn

i¼1jðDðx; xiÞÞ
n

ð5Þ
where D denotes a distance function, j denotes a kernel function (in our case the Gaussian), x denotes an example for which
we are estimating reliability and xi, i = 1, . . . ,n denotes the learning examples. Since we expect the prediction error to be high-
er in cases when the density is lower, this means that p(x) correlates negatively with the prediction error. To establish the
positive correlation, which can be used to compare our method with other reliability estimates, we need to invert p(x), thus
defining the reliability estimate as
DENSðxÞ ¼ max
i¼1;...;n

ðpðxiÞÞ � pðxÞ ð6Þ
where maxi=1,. . .,n(p(xi)) denotes the maximum value of estimated density over all learning examples in the learning set L.

3.5. Local modeling of prediction error

For comparison with existing reliability estimates, we also propose an approach to local estimation of prediction reliabil-
ity using the nearest neighbors’ labels. Given a set of nearest neighbors N={(x1,C1), . . ., (xk, ,Ck)}, we define the estimate CNK
(CNeighbors � K) for an unlabeled example (x, _) as the difference between the average label of the nearest neighbors and the
example’s prediction K (using the model that was generated on all learning examples):
CNK ¼
Pk

i¼1Ci

k
� K ð7Þ
where k denotes the number of neighbors, Ci denotes neighbors’ labels and K denotes the example’s prediction. In our exper-
iments we computed estimate CNK using five nearest neighbors. The design of the estimate CNK is illustrated in Fig. 5.

4. Experimental results

We tested and compared the estimates SAvar and SAbias, developed in our previous work, to the other estimates de-
scribed in Sections 3.2–3.5. Testing was performed using the leave-one-out cross-validation procedure. For each learning
example that was left out in the current iteration, we computed the prediction and all the reliability estimates. The perfor-
mance of the reliability estimates was measured by computing the Pearson correlation coefficient between each reliability
estimate and the prediction error. The significance of the correlation coefficient was then statistically evaluated using the
two-sided t-test for correlation coefficients.

Note that all of the estimates are expected to correlate positively with the prediction error. This means that all the esti-
mates are founded so that higher absolute values represent less reliable predictions and lower absolute values represent
more reliable predictions (the value 0 represents the reliability of the most reliable prediction). Note also that all of the esti-
mates except SAbias and CNK can take only positive values. Besides the magnitude (absolute value), which we interpret as
the prediction reliability, these two estimates also provide additional information about the direction of error (whether the
value of prediction was too high or too low). This holds potential for further work in correcting initial predictions using these
two estimates. We therefore performed the experiments by correlating the magnitudes of estimates to the absolute predic-
tion error of test examples. For estimates SAbias and CNK we also correlated their signed values to the signed prediction er-
ror of test examples. In this way, we actually tested the performance of eight estimates: SAvar, SAbias-s (signed), SAbias-a
(absolute), BAGV, LCV, DENS, CNK-s and CNK-a.
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The performance of reliability estimates was tested using eight regression model implemented in the statistical package R
[46]. Here are some key properties of the models used:

Regression trees (RT): trees [47] with mean squared error used as the splitting criterion, the value in leaves represents the
average label of examples, and trees were unpruned,
Linear regression (LR): linear regression with no explicit parameters,
Neural networks (NN): three-layered perceptron [48] with five hidden neurons and tanh activation function, learning was
performed using backpropagation with adaptive gradient descent,
Bagging (BAG): bagging [18] with 50 regression trees,
Support vector machines (SVM): an implementation of the support vector e-regression [12,49], implemented in the library
for support vector machines (LIBSVM) [50,51]. We use a radial basis function (RBF) kernel with parameter c = 1/(number
of attributes), parameter C = 1 and the precision parameter � = 0.1,
Locally weighted regression (LWR): local regression with Gaussian kernel for weighting examples according to their
distance,
Random forests (RF): random forests [52] with 100 trees,
Generalized additive model (GAM): linear model [53,54] with no special parameters.

The aim of our research was to evaluate the reliability estimates with models being treated as black boxes. Therefore, the
focus of our research was not to optimize the above model parameters to improve prediction accuracy, but to evaluate the
accuracy of reliability estimates. For the testing, 28 benchmark data sets were used, which are standard across the machine
learning community. Each data set is a regression problem. The application domains vary, including medical, ecological,
technical, mathematical and physical. Most of the data sets are available from the UCI machine learning repository [55]
and from the StatLib DataSets Archive [56]. All data sets are available from the authors on request. A brief description of
the data sets is given in Table 1.

4.1. Testing of individual estimates

The summarized results of the experiments are shown in Table 2 and in Fig. 6. The data in Table 2 indicate the percent of
domains with a significant positive or negative correlation between the reliability estimates and the prediction error. The
same results are presented graphically in Fig. 6 for each of the tested regression models. The graphs show the performance
of reliability estimates (percentage of tests with significant positive/negative correlation with the prediction error), ranked in
decreasing order with respect to the percentage of positive correlations.
Table 1
Basic characteristics of the testing data sets

Data set Number of examples Number of discrete attributes Number of continuous attributes

autoprice 159 1 14
auto93 93 6 16
autohorse 203 8 17
baskball 96 0 4
bodyfat 252 0 14
brainsize 20 0 8
breasttumor 286 1 8
cloud 108 2 4
cpu 209 0 6
diabetes 43 0 2
echomonths 130 3 6
elusage 55 1 1
fishcatch 158 2 5
fruitfly 125 2 2
grv 123 0 3
hungarian 294 7 6
lowbwt 189 7 2
mbagrade 61 1 1
pharynx 195 4 7
pollution 60 0 15
pwlinear 200 0 10
pyrim 74 0 27
servo 167 2 2
sleep 58 0 7
transplant 131 0 2
triazines 186 0 60
tumor 86 0 4
wpbc 198 0 32



Table 2
Percentage of experiments exhibiting significant positive/negative correlations between reliability estimates and prediction error

Model SAvar SAbias-s SAbias-a BAGV LCV DENS CNK-s CNK-a
+/� +/� +/� +/� +/� +/� +/� +/�

RT 46/0 82/0 50/0 64/0 36/0 36/4 86/0 68/0
LR 54/0 7/0 7/4 54/0 32/0 32/4 50/0 57/0
NN 39/4 18/4 29/4 50/0 36/0 25/4 36/4 39/4
BAG 46/4 21/0 11/0 57/0 50/0 36/7 25/0 46/0
SVM 46/4 36/7 25/0 46/0 61/0 39/4 29/11 36/0
LWR 39/7 4/7 11/7 46/0 46/0 43/7 25/11 32/0
RF 25/7 14/0 11/0 57/0 61/0 32/11 11/25 46/4
GAM 54/0 7/0 7/4 50/0 32/0 32/4 50/0 57/0

Average 44/3 24/2 19/2 53/0 44/0 34/6 39/6 48/1
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The last line in Table 2 presents the results of the reliability estimates, averaged across all eight testing regression
models. We can see that the best results were achieved using the estimates BAGV, CNK-a, LCV and SAvar (in decreasing
order with respect to the percentage of significant positive correlations). The estimate SAbias-a achieved the worst average
results.

Due to space limitations, the detailed results (the values of correlation coefficients between estimates and the prediction
error for each of the reliability estimates) are not presented here and are available from the authors on request. A summary
of the results is provided in Table 3, showing the correlation coefficients for individual domains, averaged across the eight
tested regression models. The results confirm our expectation that the reliability estimates should positively correlate with
the prediction error. Namely, we can see that the positive (desired) correlations outnumber the negative (non-desired) cor-
relations in all regression model/reliability estimate pairs.

By examining the detailed results (Table 2) we can see that the performance of the estimate CNK-s with the regression
trees stands out, being significantly positively correlated with the prediction error in 86% of the experiments and not neg-
atively correlated in any experiment. Estimate SAbias-s achieved similar performance, with positive correlation in 82% of
tests with regression trees and negative in no tests. The estimate CNK-a achieved better performance with linear models (lin-
ear regression, generalized additive model) and regression trees than the estimate BAGV, which was also the estimate with
the highest average number of significant positive correlations (53%).

The results achieved by estimates SAbias-a and SAbias-s, also confirm our expectations and analysis from previous work
[16] that estimates based on sensitivity analysis are not appropriate for models which do not partition the input space (in our
case: linear regression, locally weighted regression, and generalized additive model). Namely, from Table 2 we can see that
no other reliability estimate performed worse, indicating that the other tested estimates present a better choice for use on
these models.

The results indicate that the estimates SAbias, CNK, BAGV and LCV have good potential for estimating prediction reliabil-
ity. However, these estimates performed differently with different regression models. This motivated us to combine pairs of
estimates in order to compose a new estimate which would perform well with all models.

4.2. Combination of estimates

To create a new estimate that would perform well on all tested regression models, we combined pairs of estimates using a
linear model:
Estimatenew ¼ c � Estimate1 þ ð1� cÞ � Estimate2 ð8Þ
Different choices of the value c give different weights to each of the combined estimates in Eq. (8), making the combined
estimate behave more similarly to the estimate with the greater weight. Since we want to create a combined estimate that
equally combines the performance characteristics of both reliability estimates, we selected weight c = 0.5, hence averaging
Estimate1 and Estimate2. In our experimental work, we tested all possible pairs from the eight individual estimates, subject
to the limitation that they can be reasonably combined with respect to correlation to signed or absolute prediction error.
Thus, individual estimates which were correlated to the signed prediction error were combined only with other such esti-
mates; the estimates which were correlated to the absolute prediction error were combined only with other such estimates.
The testing of combined estimates was performed using the same experimental protocol as the testing of individual esti-
mates. The results are shown in Table 4.

From the results on combined pairs of reliability estimates, we can see that the combination of estimates BAGV and
CNK-a achieved the best performance. Comparing the results in Tables 2 and 4 reveals that the combined estimate
achieved better results (higher percentage of experiments with significant positive correlations with the prediction error)
with neural networks and with bagging. However, the combination of BAGV and CNK-a on average had significant positive
correlation with the prediction error in 54% of tests (and negatively in 1%), which means that it did not achieve a signif-
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Fig. 6. Ranking of reliability estimates by percentage of significant positive and negative correlations with prediction error.
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icant advantage over the estimate BAGV, which had significant positive correlation with the prediction error in 53% of
tests.



Table 3
Average correlation coefficients, achieved by the reliability estimates in the individual domains

Domain SAvar SAbias-s SAbias-a BAGV LCV DENS CNK-s CNK-a

autoprice 0.451 0.108 0.099 0.459 0.306 0.285 0.153 0.428
auto93 0.189 0.087 �0.026 0.267 0.236 0.085 0.243 0.350
autohorse 0.458 �0.029 0.144 0.314 0.111 0.254 0.090 0.300
baskball 0.017 0.082 �0.001 0.036 0.067 0.075 0.143 0.015
bodyfat 0.152 0.085 0.071 0.237 0.092 0.165 0.173 0.290
brainsize �0.048 0.046 �0.129 �0.073 �0.118 �0.194 0.053 �0.164
breasttumor �0.080 0.104 �0.034 �0.027 �0.017 �0.084 0.039 0.003
cloud 0.427 0.036 0.112 0.414 0.233 0.442 0.083 0.318
cpu 0.523 0.150 0.278 0.628 0.517 0.363 0.068 0.670
diabetes 0.210 0.055 �0.009 0.175 0.017 0.396 0.214 �0.032
echomonths �0.003 0.069 0.062 0.131 0.136 �0.162 0.145 0.169
elusage 0.194 0.039 0.123 0.293 0.325 0.205 0.125 0.104
fishcatch 0.246 0.137 0.125 0.596 0.466 0.341 0.421 0.499
fruitfly �0.028 0.080 �0.008 �0.048 �0.071 �0.060 �0.149 0.022
grv 0.187 0.120 0.076 0.195 0.183 0.014 0.170 0.124
hungarian 0.247 0.053 0.131 0.380 0.193 0.101 0.222 0.387
lowbwt 0.079 0.048 �0.014 0.091 0.011 0.053 0.071 0.083
mbagrade 0.004 �0.007 0.001 0.019 0.053 �0.059 �0.040 0.031
pharynx 0.164 0.109 0.058 0.236 0.170 0.134 �0.034 0.166
pollution 0.115 0.042 �0.074 0.083 0.007 0.105 0.258 0.157
pwlinear 0.191 0.017 0.015 0.233 0.029 0.137 0.102 0.166
pyrim 0.317 0.097 �0.007 0.325 0.217 0.097 0.343 0.504
servo 0.040 0.048 0.163 0.543 0.452 �0.245 �0.098 0.226
sleep 0.118 0.221 0.033 0.280 0.190 �0.037 0.164 0.170
transplant 0.302 0.182 0.162 0.434 0.482 0.477 0.280 0.380
triazines 0.187 0.070 0.038 0.284 0.147 0.153 0.228 0.269
tumor �0.075 0.143 0.077 0.105 0.136 �0.104 0.146 �0.007
wpbc 0.042 0.101 0.059 0.042 0.080 �0.052 0.139 0.048

Statistically significant values are denoted with bold type. Significant negative values are also underlined.

Table 4
Percentage of experiments exhibiting significant positive/negative correlations between the combinations of the reliability estimates and the prediction error

Model SAvar & SAbias-a SAvar & BAGV SAvar & LCV SAvar & DENS SAvar & CNK-a SAbias-s & CNK-s SAbias-a & BAGV SAbias-a & LCV
+/� +/� +/� +/� +/� +/� +/� +/�

RT 50/0 61/0 43/0 46/0 61/0 89/0 61/0 50/0
LR 54/0 54/0 39/4 54/0 61/0 50/0 54/0 32/0
NN 39/0 54/0 32/0 36/4 50/0 36/4 46/0 32/0
BAG 46/4 54/0 39/0 43/4 54/0 25/0 54/0 39/0
SVM 46/4 46/0 46/0 50/4 46/4 32/11 46/0 61/0
LWR 39/7 43/4 46/4 39/7 43/7 29/7 43/0 46/0
RF 25/7 39/4 25/4 25/7 36/4 14/18 50/0 50/0
GAM 54/0 57/0 39/4 54/0 61/0 50/0 50/0 32/0

Average 44/3 51/1 39/2 43/3 52/2 41/5 51/0 43/0

SAbias-a & DENS SAbias-a & CNK-a BAGV & LCV BAGV & DENS BAGV & CNK-a LCV & DENS LCV & CNK-a DENS & CNK-a
+/� +/� +/� +/� +/� +/� +/� +/�

RT 54/0 68/4 61/0 57/0 71/4 36/0 57/0 64/0
LR 32/4 57/0 43/0 50/0 50/0 32/0 39/0 57/0
NN 29/4 43/4 39/0 54/0 54/0 32/0 39/0 39/4
BAG 18/0 46/0 54/0 54/0 61/0 50/0 50/0 46/0
SVM 29/0 36/0 54/0 54/0 46/0 61/0 50/0 36/0
LWR 7/7 32/0 46/0 46/0 43/0 46/0 36/0 36/0
RF 11/0 46/4 61/0 50/0 50/0 61/0 61/0 46/4
GAM 32/4 57/0 46/0 54/0 54/0 32/0 39/0 57/0

Average 27/1 48/2 51/0 52/0 54/1 44/0 46/0 48/1
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Since the combination of the estimates BAGV and CNK-a performed well with some regression models and achieved
good average results, we selected it for further evaluation. Let us therefore define the estimate BVCK (Bagging Variance –
(Cneighbors � K)) which is defined as
BVCKðxÞ ¼ BAGVðxÞ þ CNKðxÞ
2

: ð9Þ
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Fig. 7. Ranking of the reliability estimates by the average percentage of significant positive and negative correlations with the prediction error.

Table 5
An example of analyzing prediction reliability

Prediction SAvar SAbias-s BAGV LCV DENS CNK-s BVCK

(x1,_) 101.26 10.69 �8.50 8.78 �14.00 0.00 1.94 5.36
(x2,_) 99.63 12.13 0.86 10.94 �16.00 0.01 �2.63 6.79

The table shows predictions and reliability estimates’ values for two unlabeled examples. Due to space limitations, absolute versions of SAbias and CNK
were omitted.
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where x denotes the example for which we are estimating reliability and BAGV(x) and CNK(x) denote the corresponding esti-
mates’ values for that particular example.

Fig. 7 presents a comparison of the results, averaged across all regression models for all reliability estimates.

Example 1. Analyzing prediction reliability Suppose we are given a learning set L and two unlabeled examples (x1,_) and
(x2,_) for which we wish to estimate and compare reliability. After computing the predictions and nine reliability estimates
using a selected regression model for each unlabeled example, we obtain the values shown in Table 5. Five out of seven
displayed estimates indicate that the prediction for the first example is more reliable (since all the estimates negatively
correlate with the prediction error, lower values therefore represent lower estimated error). Based on this finding, we might
therefore decide to trust only the prediction of the first example and potentially reject the prediction of the second example.

However, since values of the each estimate belong to the estimate-specific interval, they are difficult to compare with
other reliability estimates. If one knew whether the values of each estimate are low or high with respect to the entire esti-
mate’s target interval, one would be able to interpret the reliabilities for the examples in Table 5 differently. Also, the dis-
crepancy between the values of DENS and the other estimates reveals that some estimates may be more suitable for a given
problem than others. Both these issues provide motivation for further work in improving estimates’ interpretability and
selecting the most appropriate reliability estimate for a given problem (see Section 5).

5. Conclusion and further work

In this paper, we focused on the importance of reliability and prediction accuracy in supervised learning, as already dis-
cussed in many of the related work in this area [57–61]. We compared the sensitivity-based reliability estimates proposed in
our previous work with four other approaches to estimating the reliability of individual predictions, namely variance of
bagged predictors, local cross-validation, density-based estimation and local error estimation. Testing on 28 testing domains
and eight regression models showed promising results for using estimates SAbias-s and CNK-s with regression trees. These
estimates significantly positively correlated with the signed prediction error in 82% and 86% of tests, respectively. The best
average performance was achieved by the estimate BAGV, which turned out to be the best choice for use with neural
networks, bagging and locally weighted regression. With linear models (linear regression and generalized additive model),
the estimate CNK-a performed better than BAGV, thus improving on the performance of all other tested approaches.

With the aim of improving the estimates’ performance, we combined pairs of reliability estimates, which perform differ-
ently with different regression models. The combination of the estimates BAGV and CNK-a performed better than any other
estimate with neural networks and with bagging. On average, this combination performed comparably to the most success-
ful individual estimate BAGV, with significant positive correlation with prediction error in 54% of tests, and negative in 1%.
Based on these results, we selected this estimate for further evaluation and denoted it BVCK.
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The results show the potential of using the sensitivity-based reliability estimates for estimation of prediction error with
selected regression predictors. They also show the favorable performance of the newly proposed local error modeling esti-
mate CNK, as compared with the other estimates. These results and new ideas offer challenges for further work:

� Good performance of the signed reliability estimates (SAbias-s with regression trees and CNK-s) with the signed predic-
tion error implies the potential to use these reliability estimates for correction of regression predictions. We shall there-
fore explore whether these two reliability estimates can be used to significantly reduce the error of regression predictions.

� Different magnitudes of the correlation coefficients in different testing domains (see Table 3) indicate that the potential
for estimation of prediction reliability is more feasible in some domains than in others. The domain and model character-
istics which lead to good performance of the reliability estimates shall also be analyzed.

� Since different estimates performed differently with different domain/model pairs, an approach to automatic selection of
the optimal reliability estimate for a given domain, model and example shall be developed. For example-based selection of
the most appropriate estimate, a mapping of estimates’ values onto the same interval is necessary to ensure comparability
of estimates’ across different examples.
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[15] Z. Bosnić, I. Kononenko, Estimation of regressor reliability, Journal of Intelligent Systems 17 (1/3) (2008) 297–311.
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